goo.gene¶
- class goo.gene.CircuitEngine[source]¶
Bases:
object
- copy() CircuitEngine [source]¶
Return copy of engine.
- Return type:
- load_circuits(*circuits: Circuit)[source]¶
Load engine with model network.
- Parameters:
circuits (Circuit)
- class goo.gene.DegFirstOrder(x: goo.gene.Gene, k: float)[source]¶
Bases:
Circuit
- Parameters:
x (Gene)
k (float)
- k: float¶
d[x]/dt = -k[x]
- class goo.gene.Gene(name: str)[source]¶
Bases:
object
Gene class to represent a gene in the gene regulatory network.
- Parameters:
name (str) – Name of the gene.
- class goo.gene.GeneRegulatoryNetwork(gene_concs: dict = {}, circuit_engine: CircuitEngine = None)[source]¶
Bases:
object
Gene regulatory network to simulate gene expression.
- Parameters:
concs – Initial concentrations of genes.
circuit_engine (CircuitEngine) – Engine to simulate gene regulatory networks
gene_concs (dict)
- copy() GeneRegulatoryNetwork [source]¶
- Return type:
- load_circuits(*circuits: Circuit)[source]¶
Load engine with model network.
- Parameters:
circuits (Circuit)
- class goo.gene.ProdActivation(y: Gene, x: Gene, kcat: float, Km: float = 1, n: float = 2, s: Gene = None, a0: float = 0)[source]¶
Bases:
Circuit
d[y]/dt = kcat * [x]**n / (Km + [x]**n), optional substrate s consumed, and optional leaky factor a0.
- Km: float = 1¶
- a0: float = 0¶
- kcat: float¶
- n: float = 2¶
- class goo.gene.ProdAnd(z: Gene, x: Gene, y: Gene, k: float, nx: float = 2, ny: float = 2, s: Gene = None, a0: float = 0)[source]¶
Bases:
Circuit
d[z]/dt = k([x] AND [y]), optional substrate s consumed, and optional leaky factor a0.
- a0: float = 0¶
- k: float¶
- nx: float = 2¶
- ny: float = 2¶
- class goo.gene.ProdRepression(y: Gene, x: Gene, kcat: float, Km: float = 1, n: float = 2, s: Gene = None, a0: float = 0)[source]¶
Bases:
Circuit
d[y]/dt = kcat / (Km + [x]**n), optional substrate s consumed, and optional leaky factor a0.
- Km: float = 1¶
- a0: float = 0¶
- kcat: float¶
- n: float = 2¶
- class goo.gene.RoadRunnerEngine[source]¶
Bases:
CircuitEngine
Engine to simulate gene regulatory networks using RoadRunner.
- Parameters:
model – Model of the gene regulatory network.
result – Result of the simulation.